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Abstract

Vision-Language Models (VLMs) have demonstrated im-
pressive capabilities in text understanding, but their perfor-
mance on complex structured images remains limited, espe-
cially in technical domains such as engineering diagrams.
In this work, we investigate the challenge of teaching a VLM
to interpret digital circuit diagrams, a task requiring both
fine-grained visual recognition and domain-specific reason-
ing. We introduce a novel dataset of circuit diagrams con-
taining both synthetic and hand-drawn examples, and apply
Group Relative Policy Optimization (GRPO) - a reinforce-
ment learning approach - to fine-tune the VLM. We ana-
lyze our results on both synthetic and hand drawn images
(77.0% synthetic, 62.5% hand drawn, 22.5% base) and dis-
cuss potential areas for further improving accuracy.

1. Introduction
1.1. Problem

Large, modern organizations, particularly those in highly
technical sectors such as the semiconductor industry, grap-
ple with a significant volume of multimodal information.
This information is not limited to just text but includes
a rich tapestry of structured visual elements: detailed di-
agrams, complex flowcharts, and domain-specific images
like intricate circuit schematics.An AI agent proficient in
understanding these diagrams can significantly streamline
various processes. Thus, enhancing AI’s capability to de-
code and utilize multimodal information, specifically cir-
cuit diagrams, is crucial for driving efficiency and innova-
tion within the chip and semiconductor industry. However,
while current LLMs excel at text comprehension, their im-
age understanding capabilities, particularly for domain spe-
cific diagrams or charts, are less developed. [9]

1.2. Potential Impact

The transformative effect of code-proficient Large Lan-
guage Models (LLMs) on software engineering offers a
compelling precedent. These models have revolutionized

workflows by assisting in code generation, debugging, and
documentation, significantly boosting developer produc-
tivity and accelerating innovation cycles. Similarly, an
AI agent adept at interpreting intricate circuit schemat-
ics and hardware description languages could herald a
paradigm shift in the semiconductor industry. Such a sys-
tem could automate or augment tasks like design verifica-
tion, schematic comparison, component identification, doc-
umentation generation from diagrams, and even assist in
debugging hardware designs. This would free up hardware
engineers from time-consuming manual analysis, reduce er-
rors, shorten design-to-production timelines, and ultimately
foster a more agile and innovative hardware development
ecosystem, much like their counterparts have in software.

1.3. Overview of Results

We selected Qwen2.5-VLM-3B-Instruct [1] due to its
small size, open source documentation, and compatibility
with existing libraries. We experimented with two methods
of fine tuning: SFT and GRPO. We constructed a training
and evaluation dataset of synthetic digital circuits diagrams.
We found we had poor results with SFT, but GRPO achieved
an 77.0% accuracy in our evaluations, up from 22.5% ac-
curacy for the base model. In addition, we used 20 hand-
drawn diagrams for further evaluation and found GRPO was
able to achieve 62.0% compared to the base model’s 22.5%
accuracy. Our results show that with proper fine-tuning,
VLMs can get much better at recognizing circuit elements
correctly, although there is still more work to do before we
can consider them reliable enough to provide useful analy-
sis.

2. Related Work
The automated understanding of circuit diagrams has

evolved from early rule-based systems to sophisticated deep
learning models.

2.1. Early and Computer Vision-Based Approaches

Initial efforts relied on traditional Computer Vision (CV)
techniques, involving image pre-processing (e.g., binariza-
tion, skeletonization), component detection (using pattern
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matching, SVMs, or later, object detectors like YOLO [16]),
line and junction detection (e.g., Hough Transform [6]), and
text recognition (OCR). These multi-stage pipelines aimed
to reconstruct a circuit’s netlist. Efforts to improve these tra-
ditional algorithms have also been explored, demonstrating
advancements in recognition speed and accuracy for both
printed and hand-drawn circuit diagrams [10]. In addition, a
computer vision-based framework has also been developed
for power converter identification and analysis [2]. How-
ever, these methods were often brittle, sensitive to varia-
tions in drawing styles and image quality, and lacked deep
semantic understanding beyond spatial proximity. Errors in
early stages could propagate, leading to incorrect interpre-
tations. The need for large, high-quality annotated datasets
was also a significant bottleneck.

2.2. Large Language Models (LLMs) for Circuit
Analysis

Recently, foundation models, including LLMs and
VLMs, have transformed circuit analysis. Circuit Founda-
tion Models (CFMs) [7] are pre-trained on extensive cir-
cuit data and then fine-tuned for specific Electronic De-
sign Automation (EDA) tasks. CFMs are categorized into
encoder-based models (for learning circuit representations
for predictive tasks like power estimation) and decoder-
based, LLM-centric models (for generative tasks like HDL
code generation, optimization, and analog circuit reason-
ing). Related research also focuses on AI-driven schematic
image recognition for RTL generation in integrated circuit
design [22]. Moreover, the CIRCUIT [21] benchmark was
developed to assess LLM reasoning on analog circuits, of-
ten using netlists alongside diagrams. While many CFMs
operate on textual representations (like Verilog or netlists),
projects focusing on interpreting circuits directly from vi-
sual schematics face the added complexity of robust visual
grounding, where the Vision Transformer (ViT) component
of a VLM plays a crucial role and can be a bottleneck. Re-
search also distinguishes between analog circuit analysis
(continuous signals, complex functions) and digital circuit
analysis (discrete logic levels, Boolean algebra), each pre-
senting unique challenges for AI.

2.3. Vision-Language Models for Understanding
Structured Visual Data

VLMs have advanced in joint image-text understanding,
but their proficiency with general imagery doesn’t always
extend to structured visuals like scientific diagrams, charts,
and schematics, which have their own grammar and rely on
precise spatial and symbolic conventions.

General Challenges for VLMs: VLMs struggle with
tasks requiring precise visual arithmetic (e.g., counting,
comparing lengths in charts), parsing fine-grained details
in dense diagrams, and recognizing geometric shapes and

their relational structures (e.g., connectivity in flowcharts
or circuit diagrams). This indicates a ”semantic gap” where
VLMs may perform surface-level recognition but falter on
deeper, structured semantic understanding.

Methodologies for Enhancing VLM Comprehension:
Researchers are exploring various methods to improve
VLM understanding of structured graphics. These include:
Post-training strategies: COGALIGN [17], inspired by cog-
nitive development, trains VLMs on invariant visual prop-
erties (length, angle) using synthetic data and Direct Pref-
erence Optimization (DPO) [15] to improve foundational
visual arithmetic. Decomposition and region-focused anal-
ysis: The Chain-of-Regions (CoR) [11] approach uses tra-
ditional CV to segment diagrams into smaller elements be-
fore VLM processing. Specialized models and benchmarks:
ChartVLM and the ChartX [24] benchmark are examples
tailored for chart understanding.

2.4. Reinforcement Learning for (Vision-) Lan-
guage Model Capabilities

Reinforcement Learning for Advanced (Vision-
)Language Model Capabilities Reinforcement Learning
(RL) is increasingly used to fine-tune LLMs and VLMs,
enabling them to learn complex, multi-step reasoning
strategies by receiving feedback as rewards. Group Rela-
tive Policy Optimization (GRPO) [20]: GRPO has emerged
as a promising RL method, particularly for tasks with
objectively verifiable outcomes. It works by generating
multiple candidate responses for a query and evaluating
them relative to each other, computing advantages based
on the comparison of each response’s reward to the group’s
average reward. This is well-suited for reasoning-intensive
tasks like mathematical problem-solving, code generation,
and circuit interpretation. Key advancements using GRPO
include: VL-Rethinker [23]: This model aims to cultivate
”slow thinking” (explicit reflection) in VLMs. It addresses
the ”vanishing advantages” problem (where small reward
variance across candidate responses leads to weak learning
signals) by incorporating Selective Sample Replay (SSR)
– replaying high-value past samples. It also uses ”Forced
Rethinking” (prompting self-reflection) to achieve state-of-
the-art results on multimodal math reasoning benchmarks.
Curr-ReFT (Curriculum Reinforcement Fine Tuning) [5]:
This paradigm addresses out-of-distribution generalization
and reasoning issues in smaller VLMs. It uses curriculum-
based RL with GRPO and a difficulty-aware reward design,
and also identified the ”Brick Wall” phenomenon, where
small VLMs improve on simple tasks but struggle with
complex ones requiring simultaneous visual understanding
and reasoning.
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3. Data
While multi-level datasets and benchmarks like AICir-

cuit have been developed for AI-driven analog integrated
circuit design [13], since our focus is on digital circuits, we
created our own synthetic dataset of 1800 training and 200
test {image, question, answer} tuples.

First, we randomly generate a combinational logic string
like "a and (b or (not c))". We constrain the ex-
pression to have an integer range of 1 to 5 logical operators
inclusive (i.e., 1–5 logic gates).

Since we know the ground truth combinational logic ex-
pression, we can ask questions about the image such as:

Figure 1. circuit 000287.jpg

Image: circuit 000287.jpg
Question Type: gate count
Conversation:

• – Prompt: <image> How many logic gates
are in this circuit diagram? Your
answer should be a single number
(e.g., 5).

– Answer: 3

Figure 2. circuit 000840.jpg

Image: circuit 000840.jpg
Question Type: gate inputs
Conversation:

• – Prompt: <image> What are the inputs
of gate ’uv’? List the inputs
separated by commas (e.g., ’w1,
w2, w3’). Do not include any other
words or explanations.

– Answer: Ceh, R4va

We selected a total of 8 question types to test the model’s
ability to understand the circuit diagrams, focusing on tasks
such as visual counting, label association, element connec-
tivity, and classification.

• Gate Count: Number of gates in the circuit.

• Gate Input Count: Number of inputs to a logic gate.

• Gate Type Count: Number of gates of a specific type
(e.g., AND, OR, XOR).

• Gate Type: Type of logic gate (e.g., AND, OR, XOR).

• Gate Inputs: Names of input wires to a logic gate.

• Gate Outputs: Names of the outputs of a logic gate.

• Primary Inputs List: Top-level inputs to the entire
circuit diagram (non-intermediate wires).

• Gate Fan Out: Number of circuits a single wire
drives.

We then use the Schemdraw library’s logicparse()
[18] function to generate a corresponding image given this
combinational logic. Certain parameters, like text font size
and relative location to each logic gate, were perturbed ac-
cording to a Gaussian distribution. Schemdraw did not
support intermediate wire labeling, so we had to partially
rewrite its circuit drawing functionality to achieve this (as
well as adding random perturbations to label font size and
gate spacing).

3.1. Handdrawn Circuits

We also evaluated our fine-tuned model on 20 hand-
drawn circuit diagrams, aiming to see how they perform on
real-world data.

Figure 3. Hand-drawn circuit image 1.

3.2. Limitations of Our Dataset

We did not allow for cycles in our combinational logic,
as we found it would complicate the data generation ex-
cessively. DAG (Directed Acyclic Graph) circuits were
sufficient to challenge the model on visual understanding
of circuit images. However, digital circuits with feedback

3



and cyclic connections are common in the wild, and this is
something we hope to add in our future work.

We also constrained both our circuit image size and the
number of logical gates in the interest of keeping training
time reasonable.

Finally, our hand-drawn circuit images may not accu-
rately describe ”real world” distribution of circuit images
due to its limited number of samples.

4. Methods
Our approach focuses on efficiently fine-tuning a pre-

trained vision-language model for a specialized task. We
selected methods prioritizing computational efficiency and
performance, leveraging recent advancements in large lan-
guage model (LLM) training.

4.1. Base Model

We selected Qwen2.5-VL-Max (3B Instruct) as our base
model [1]. Qwen2.5-VL is a series of large-scale vision-
language models designed to perceive and understand both
text and visual information, making it a suitable foundation
for tasks requiring multimodal understanding.

4.2. Fine-Tuning with LORA

Given the substantial computational resources typically
required to fine-tune LLMs, we employed Low-Rank Adap-
tation (LoRA) [8]. LoRA significantly reduces the num-
ber of trainable parameters, and thus GPU memory require-
ments, by injecting trainable rank decomposition matrices
into the layers of the Transformer architecture while keep-
ing the pre-trained model weights frozen. This allows for
more efficient fine-tuning without a substantial loss in per-
formance. For a pre-trained weight matrix W0 ∈ Rd×k, its
update ∆W is represented by the product of two smaller
matrices: B ∈ Rd×r and A ∈ Rr×k, where the rank
r ≪ min(d, k). The modified weight matrix W ′ is ex-
pressed as:

W ′ = W0 + α
BA

r

where α is a scaling factor [8]. As [8] demonstrated, LoRA
can match or exceed the performance of full fine-tuning
while being considerably more parameter-efficient.

4.3. Group Relative Policy Optimization (GRPO)

For the core training methodology, we adopted Group
Relative Policy Optimization (GRPO), first introduced in
DeepSeekMath [20]. GRPO is a reinforcement learning-
based approach that has shown strong performance in math-
ematical reasoning tasks [4]. It focuses on optimizing the
policy by comparing the rewards of generated solutions
within a group, rather than relying solely on absolute reward
signals, which can be noisy or difficult to define precisely.

The GRPO advantage estimate ÂGRPO(x, y) for an input x
and a sampled output y ∼ πk(·|x) (where πk is the current
policy) is formulated as [20]:

ÂGRPO(x, y) =
r(x, y)− µ̂πk,r(x)

σ̂πk,r,ϵ(x)

where r(x, y) is the reward, µ̂πk,r(x) is the estimated mean
reward for input x under policy πk:

µ̂πk,r(x) =
1

G

G∑
l=1

r(x, yl)

and σ̂πk,r,ϵ(x) is the estimated standard deviation of re-
wards for input x under policy πk, with a small constant
ϵ for numerical stability:

σ̂πk,r,ϵ(x) =

√√√√ 1

G

G∑
l=1

(r(x, yl)− µ̂πk,r(x))
2 + ϵ

This relative comparison helps stabilize the training process
and guides the model towards generating higher-quality
outputs.

4.4. DAPO-Inspired Enhancements

To further enhance training efficiency and potentially im-
prove performance, we incorporated several techniques in-
spired by Decoupled Clip and Dynamic Sampling Policy
Optimization (DAPO) [12]. Specifically:

Clip Higher: We adjusted the clipping range for pol-
icy updates. DAPO suggests that a less restrictive clip can
sometimes speed up convergence by allowing for larger,
more confident updates when the advantage is high [12].

No KL Divergence: We opted to remove the Kullback-
Leibler (KL) divergence constraint often used in methods
like Proximal Policy Optimization (PPO) [19] to keep the
fine-tuned policy close to the original policy. The PPO ob-
jective with a KL penalty is typically formulated as [19]:

LKLPEN (θ) = Êt

[
rt(θ)Ât − βKL[πθold(·|st), πθ(·|st)]

]
While KL divergence helps in stabilizing training, DAPO
and related works have explored scenarios where remov-
ing or adjusting its influence can lead to faster adaptation,
especially when a significant shift from the base model’s
behavior is desired. These modifications aim to accelerate
the learning process by allowing the model more freedom
to explore the policy space.

4.5. Alternatives Approaches Considered

In the initial phases of our project, we briefly experi-
mented with Supervised Fine-Tuning (SFT) [14, 3]. SFT in-
volves training the model on pairs of (input, desired output)
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examples in a standard supervised learning manner. The
standard loss function for SFT in language models is the
negative log-likelihood (cross-entropy loss) [14]:

LSFT (θ) = −
∑

(x,y)∈D

|y|∑
t=1

logP (yt|y<t, x; θ)

However, we observed that our models struggled to reli-
ably learn the target task using SFT alone, often producing
incoherent or irrelevant outputs. While this could poten-
tially be attributed to an insufficient number of training iter-
ations or suboptimal hyperparameter tuning, the initial re-
sults prompted us to explore more advanced reinforcement
learning-based fine-tuning strategies like GRPO, which are
designed to handle more complex generation and reasoning
tasks. This combined approach—a strong base model, effi-
cient LoRA fine-tuning, a robust GRPO training algorithm,
and DAPO-inspired speed enhancements—was chosen to
balance performance with computational feasibility, draw-
ing upon demonstrated successes in the field.

5. Experiments
We conducted experiments to demonstrate our AI agent’s

ability to understand digital logic circuit diagrams. Our goal
was to confirm the model could accurately interpret visual
circuit representations and answer related queries, thereby
establishing a strong framework for automated circuit anal-
ysis.

Our initial approach involved Supervised Fine-Tuning
(SFT) of a pre-trained Vision Language Model (VLM)
using synthetically generated circuit image and question-
answer pairs. The model’s objective was to predict the cor-
rect answer given a circuit image and a question.

However, this SFT method showed significant limita-
tions. The model frequently produced inaccurate final an-
swers and, more critically, flawed reasoning. Its explana-
tions were often superficial, relying on pattern matching
rather than true logical deduction. This suggested a shallow
understanding of circuit semantics and connectivity, high-
lighting the need for a more sophisticated training approach
to achieve deeper logical reasoning and generalization.

In response to the inherent limitations observed with
SFT, our research strategically pivoted towards a reinforce-
ment learning-based approach. Specifically, we leveraged
a modified Group Relative Policy Optimization (GRPO) al-
gorithm. GRPO, unlike purely supervised methods, allows
the agent to learn from its own generated outputs and the
subsequent evaluation of those outputs, enabling a more
adaptive and exploratory learning process.

5.1. Question Types

One of our experiments involved the expansion of ques-
tion types. Initially, our dataset encompassed only four fun-

damental question types, which provided a limited scope
for evaluating the agent’s comprehensive understanding.
To thoroughly probe the agent’s capabilities across various
facets of circuit analysis and to identify specific areas of
strength and weakness, it was systematically expanded to
eight question types. These question types were mentioned
in the data section earlier.

This expansion served not only to test the model on a
larger variety of tasks, but also to provide more compre-
hensive and granular information about the agent’s under-
standing of each circuit image. The increased diversity in
queries allowed for a more holistic and robust evaluation of
the agent’s reasoning abilities.

5.2. Dynamic Sampling

Modifications to the base GRPO algorithm were im-
plemented to enhance both training efficiency and overall
model performance. One key innovation was the introduc-
tion of dynamic sampling. This adaptive mechanism lever-
ages an exponential moving average of the model’s accu-
racy on each specific question type. During training, if the
model’s moving average accuracy on a particular question
type consistently exceeds a predefined threshold (i.e., 95%),
the probability of sampling that question type for subse-
quent training batches is dynamically decreased, up to a
maximum skip probability of 0.9. This strategic re-
duction in sampling frequency for well-mastered question
types prevents redundant training and allows computational
resources to be more efficiently allocated. Conversely, if
a subsequent performance check reveals a decline in accu-
racy for a previously skipped question type, it is promptly
re-introduced into the training pool. This adaptive sampling
strategy reduced overall training time by directing the learn-
ing process towards areas where the model required more
attention. Furthermore, by continuously focusing on areas
of current weakness, dynamic sampling inherently helps
to achieve more uniform performance across all question
types, which prevents the model from over-optimizing on
easily mastered tasks while neglecting more challenging
ones. This led to a more balanced and robust agent. The
same is shown in Figure 4.

5.3. Image Resolution

Experiments were also conducted to determine the op-
timal image resolution for the input circuit diagrams while
balancing visual information fidelity with computational ef-
ficiency. We tested three distinct resolutions for training:
the original 72 DPI (dots per inch), 1.5 times the original
(resulting in 108 DPI), and 2 times the original (144 DPI).
While the 1.5 times original DPI (108 DPI) resolution con-
sistently yielded the best results in terms of model accuracy,
we observed a substantial increase in training time with
higher image resolutions due to increased computational
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Figure 4. Image representing Dynamic Sampling. Y axis: Probability of skipping a training step. X axis: Steps of training.

Figure 5. Image highlighting the accuracy of GRPO based on each question type. The hyperparameters are same as those mentioned in
section 5.4 with temperature value of 1.2. Y axis: Accuracy. X axis: Steps of training.

load and memory footprint. Therefore, to prioritize train-
ing speed and maintain practical feasibility for our project
while still achieving acceptable performance, we opted to
retain the original 72 DPI resolution for our primary train-
ing runs. This decision represented a pragmatic trade-off
between maximizing accuracy and managing computational
resources effectively.

5.4. Hyperparameter Tuning

Extensive hyperparameter tuning was performed to iden-
tify the optimal configurations for the GRPO model - a
critical step in maximizing its performance. We system-

atically tested various values for key hyperparameters, in-
cluding batch size, number of generations, learning rate,
LoRA rank, and temperature. Our findings indicated that
the best results were achieved with the following hyperpa-
rameter values:

LoRA rank: 80. LoRA (Low-Rank Adaptation) is a
parameter-efficient fine-tuning technique that injects train-
able low-rank matrices into the transformer layers. The rank
determines the dimensionality of these matrices that influ-
ences the expressiveness of the adaptation. A rank of 80 was
found to provide sufficient capacity for adaptation without
introducing excessive parameters.
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LoRA alpha: 80. LoRA alpha is a scaling factor for the
LoRA weights. Keeping it identical to the LoRA rank (80)
is a common practice, as it helps to maintain the relative
importance of the LoRA adaptation proportional to its rank,
ensuring stable and effective fine-tuning.

Learning rate: 1 × 10−5. This relatively low learning
rate was chosen to ensure stable training over a large num-
ber of optimization steps, effectively preventing oscillations
or divergence that can occur with higher rates, especially in
complex reinforcement learning setups.

Batch size: 32. This value represents the number of
training examples processed in one forward/backward pass.
A batch size of 32 provided a good balance between stable
gradient estimates and efficient memory utilization.

Number of generations: 32. This parameter refers to
the number of samples (e.g., generated responses or trajec-
tories) produced by the policy in a single optimization step
for calculating the policy gradient. Keeping it identical to
the batch size (32) often aligns well with the model’s pro-
cessing capabilities and memory constraints, ensuring that
each generated sample contributes effectively to the policy
update in a balanced manner.

Temperature: Experiments were conducted with tem-
perature values of 1.1 and 1.2. Temperature in language
models controls the randomness of predictions by scal-
ing the logits before the softmax function. Higher val-
ues of temperature increase randomness (promoting explo-
ration) whereas lower values make the model’s predictions
more deterministic (promoting exploitation). While temper-
ature 1.1 achieved slightly higher accuracy during training
(78.9% at 3400 steps) compared to temperature 1.2 (74.8%
at 3400 steps). This is shown in figure 5.

Our actual evaluation revealed that temperature 1.2 per-
formed marginally better on the evaluation dataset (77.0%
accuracy) compared to temperature 1.1 (76.3% accuracy).
This suggests that the increased randomness introduced by
a higher temperature (1.2) facilitated better generalization
and robustness during evaluation, potentially encouraging
the model to explore a wider range of valid reasoning paths
during training.

5.5. Hand-drawn Dataset

To further test the vision component and generalization
capabilities of our model, particularly against less ideal-
ized and more challenging inputs, we created a supple-
mentary dataset of 20 hand-drawn logic circuit images.
These images inherently possess greater visual noise, stylis-
tic variations, and less uniformity compared to their syn-
thetically generated counterparts. For each of these hand-
drawn circuits, 8 distinct questions were meticulously for-
mulated. These questions mirrored those used for the syn-
thetic data, which yielded a total of 160 question-answer
pairs. Two JSON Lines files, qa dataset.jsonl and

circuit.jsonl, were also generated for this ”handwrit-
ten” data subset, maintaining consistency in data structure
with our primary synthetic dataset and stored under the
dedicated ’handwritten’ file of the ’data’ directory. Test-
ing against this challenging dataset, we found that the base
model (Qwen2.5 VLM), without any GRPO fine-tuning, ex-
hibited a low accuracy of 22.5%. In stark contrast, our
GRPO model, employing the specified hyperparameters
mentioned above, achieved a significantly higher accuracy
of 53.1% with temperature 1.1 and an even more impressive
62.5% with temperature 1.2. This substantial performance
improvement on hand-drawn data further corroborates the
benefit of increased randomization (temperature 1.2) for im-
proved generalization and robustness to real-world visual
variability, which aligns with the trends observed earlier on
the synthetically generated evaluation dataset.

5.6. Reward Function

Initially, our GRPO experiments utilized a binary reward
system, providing a simple ”correct” or ”incorrect” signal.
However, we found that this binary reward was insuffi-
cient for nuanced learning. Consequently, we experimented
with incorporating F1 scoring as the reward function in our
GRPO framework.

The F1 score - the harmonic mean of precision and recall
- offers a more granular and balanced measure of correct-
ness. It is particularly useful when dealing with situations
where true positive and false positive classifications carry
different weights, or when datasets are imbalanced, which
means that some correct answers appear less frequently.
Unlike a binary reward, the F1 score incentivizes the model
to balance two key aspects: precision and recall.

The F1 score is a special case of the more general Fβ

measure, which allows weighting recall more heavily than
precision (or vice versa) via the parameter β. When β = 1,
the Fβ measure becomes the F1 score, treating precision and
recall as equally important:

Fβ = (1 + β2) · precision · recall
β2 · precision + recall

F1 = 2 · precision · recall
precision + recall

The F1 score penalizes models more heavily if there is
a significant imbalance between precision and recall that
compels the agent to achieve a strong performance across
both. This shift from a binary to an F1-based reward system
within GRPO significantly boosted the accuracy of two pre-
viously low-performing question types: ”gate count” and
”primary inputs list”, which demonstrates its effectiveness
in guiding the agent towards more precise and complete an-
swers for these specific queries by encouraging a balanced
focus on both correctly identifying instances and avoiding
incorrect predictions.
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5.7. Results

The table below shows the base performance of the
model before fine tuning, the fine tuned model without
improvements submitted during the milestone, and the
model’s final performance after adding improvements to
the training process such as dynamic sampling, an updated
F1 reward function, and tuning hyperparameters such as
num generations and temperature.

Task Model
Base Milestone Final (Ours)

gate count 14.3% 76.0% 82.0%
gate inputs 34.40% 84.0% 84.0%
gate output wire 24.8% 89.7% 88.0%
gate type 35.3% 38.7% 56.0%
count specific gate type 16.0% N/A 62.0%
gate fan out 34.6% N/A 98.0%
gate input count 19.7% N/A 97.0%
primary inputs list 1.5% N/A 49.0%
Average 22.6% 72.1% 77.0%

6. Conclusion
In this work, we addressed the challenge of enabling

Vision-Language Models (VLMs) to interpret digital circuit
diagrams, a task critical for technical domains. We intro-
duced a novel dataset of synthetic and hand-drawn circuit
diagrams and employed a modified version of Group Rela-
tive Policy Optimization (GRPO) to fine-tune the Qwen2.5-
VLM-3B-Instruct model. Our experiments demonstrated a
significant improvement in performance, with the GRPO-
tuned model achieving 77.0% accuracy on synthetic dia-
grams and 62.5% on hand-drawn ones, a substantial in-
crease from the base model’s 22.5% accuracy. Enhance-
ments such as dynamic sampling, an F1-based reward func-
tion, and careful hyperparameter tuning, including LoRA
rank and temperature, were crucial in achieving these re-
sults.

Despite these advancements, there are areas for future
exploration. Our current dataset does not include circuits
with cyclic dependencies, which are common in real-world
digital designs. Future work could involve expanding the
dataset to include such complex circuits and increasing the
diversity and size of the hand-drawn dataset to better repre-
sent real-world variability. Further refinement of the VLM
architecture and training strategies could also lead to even
higher accuracy and robustness, moving closer to a reliable
AI agent for automated circuit analysis in the semiconduc-
tor industry.

7. Contributions
Z.Z. set up codebase, researched GRPO and DAPO to

implement modifications to the training algorithms to im-
prove performance, wrote Data and Methods section of re-

port. A.D. wrote the script for SFT. ran SFT training,
GRPO training, synthetic and hand-drawn dataset evalu-
ations on SFT and GRPO, and conducted hyperparame-
ter tuning. D.P. generated the synthetic and handwritten
dataset. A.D., Z.Z., and D.P. wrote the paper. D.P. made
the poster.
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